The synaptophysin (SYP) family comprises integral membrane proteins involved in vesicle-trafficking events, but the physiological function of several members has been enigmatic for decades. The presynaptic SYP protein controls neurotransmitter release, while SYP-like 2 (SYPL2) contributes to maintain normal Ca2+-signaling in the skeletal muscles. The polymorphic pantophysin (Pan I) of Atlantic cod shows strong genetic divergence between stationary and migratory populations, which seem to be adapted to local environmental conditions. We have investigated the functional involvement of Pan I in the different ecotypes by analyzing the 1) phylogeny, 2) spatio-temporal gene expression, 3) structure-function relationship of the Pan I-A and I-B protein variants, and 4) linkage to rhodopsin (rho) recently proposed to be associated with different light sensitivities in Icelandic populations of Atlantic cod. We searched for SYP family genes in phylogenetic key species and identified a single syp-related gene in three invertebrate chordates, while four members, Syp, Sypl1, Sypl2 and synaptoporin (Synpr), were found in tetrapods, Comoran coelacanth and spotted gar. Teleost fish were shown to possess duplicated syp, sypl2 and synpr genes of which the sypl2b paralog is identical to Pan I. The ubiquitously expressed cod Pan I codes for a tetra-spanning membrane protein possessing five amino acid substitutions in the first intravesicular loop, but only minor structural differences were shown between the allelic variants. Despite sizable genomic distance (>2.5 Mb) between Pan land rho, highly significant linkage disequilibrium was found by genotyping shallow and deep water juvenile settlers predominated by the Pan I-A-rho(A) and Pan I-B-rho(B) haplotypes, respectively. However, the predicted rhodopsin protein showed no amino add changes, while multiple polymorphic sites in the upstream region might affect the gene expression and pigment levels in stationary and migratory cod. Alternatively, other strongly linked genes might be responsible for the sharp settling stratification of juveniles and the different vertical behavior patterns of adult Atlantic cod. (C) 2015 Elsevier B.V. All rights reserved.

Evolutionary history and adaptive significance of the polymorphic Pan I in migratory and stationary populations of Atlantic cod (Gadus morhua)

De Rosa Maria Cristina;Pirolli Davide;
2015

Abstract

The synaptophysin (SYP) family comprises integral membrane proteins involved in vesicle-trafficking events, but the physiological function of several members has been enigmatic for decades. The presynaptic SYP protein controls neurotransmitter release, while SYP-like 2 (SYPL2) contributes to maintain normal Ca2+-signaling in the skeletal muscles. The polymorphic pantophysin (Pan I) of Atlantic cod shows strong genetic divergence between stationary and migratory populations, which seem to be adapted to local environmental conditions. We have investigated the functional involvement of Pan I in the different ecotypes by analyzing the 1) phylogeny, 2) spatio-temporal gene expression, 3) structure-function relationship of the Pan I-A and I-B protein variants, and 4) linkage to rhodopsin (rho) recently proposed to be associated with different light sensitivities in Icelandic populations of Atlantic cod. We searched for SYP family genes in phylogenetic key species and identified a single syp-related gene in three invertebrate chordates, while four members, Syp, Sypl1, Sypl2 and synaptoporin (Synpr), were found in tetrapods, Comoran coelacanth and spotted gar. Teleost fish were shown to possess duplicated syp, sypl2 and synpr genes of which the sypl2b paralog is identical to Pan I. The ubiquitously expressed cod Pan I codes for a tetra-spanning membrane protein possessing five amino acid substitutions in the first intravesicular loop, but only minor structural differences were shown between the allelic variants. Despite sizable genomic distance (>2.5 Mb) between Pan land rho, highly significant linkage disequilibrium was found by genotyping shallow and deep water juvenile settlers predominated by the Pan I-A-rho(A) and Pan I-B-rho(B) haplotypes, respectively. However, the predicted rhodopsin protein showed no amino add changes, while multiple polymorphic sites in the upstream region might affect the gene expression and pigment levels in stationary and migratory cod. Alternatively, other strongly linked genes might be responsible for the sharp settling stratification of juveniles and the different vertical behavior patterns of adult Atlantic cod. (C) 2015 Elsevier B.V. All rights reserved.
2015
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
Pan I
Rhodopsin
Synaptic vesicle
Atlantic cod
Polymorphism
Ecotypes
File in questo prodotto:
File Dimensione Formato  
prod_333781-doc_162108.pdf

solo utenti autorizzati

Descrizione: Evolutionary history and adaptive significance of the polymorphic Pan I in migratory and stationary populations of Atlantic cod (Gadus morhua)
Tipologia: Versione Editoriale (PDF)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/297864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact