Reactive plasma spraying (RPS) technology has been used to produce high thickness (> 100 mu m) films of composite Ti-TiN-TixNy coatings. Reactively sprayed coatings obtained from SP700 (Ti-4.5Al-3V-2Mo-2Fe) and Ti6242 (Ti-6Al-2Sn-4Zr-2Mo) powders, deposited onto flat substrates of Ti-6Al-4V, have been investigated. X-ray diffraction (XRD) and micro-hardness measurements have been used to characterize the crystallographic features and differences between the hardness of cross-section and surface. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques have been used to determine the morphology and surface chemical composition of the coatings. Back-scattered electron imaging has revealed the distribution of Ti and TiN in the composite material. Obtained results evidenced a sharp interface between the coating and substrate in terms of the profile of chemical composition. The presence of unmelted Ti particles as well as the formation of nitrides was observed.

Characterization of composite titanium nitride coating prepared by reactive plasma spraying

GM Ingo;S Kaciulis;A Mezzi;
2005

Abstract

Reactive plasma spraying (RPS) technology has been used to produce high thickness (> 100 mu m) films of composite Ti-TiN-TixNy coatings. Reactively sprayed coatings obtained from SP700 (Ti-4.5Al-3V-2Mo-2Fe) and Ti6242 (Ti-6Al-2Sn-4Zr-2Mo) powders, deposited onto flat substrates of Ti-6Al-4V, have been investigated. X-ray diffraction (XRD) and micro-hardness measurements have been used to characterize the crystallographic features and differences between the hardness of cross-section and surface. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques have been used to determine the morphology and surface chemical composition of the coatings. Back-scattered electron imaging has revealed the distribution of Ti and TiN in the composite material. Obtained results evidenced a sharp interface between the coating and substrate in terms of the profile of chemical composition. The presence of unmelted Ti particles as well as the formation of nitrides was observed.
2005
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
titanium nitride; coating; plasma spraying; XPS; XRD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 65
social impact