The deliberate use of biological warfare agents (BWA) and other pathogens can jeopardize the safety of population, fauna and flora, and represents a concrete concern from the military and civil perspective. At present, the only commercially available tools for fast warning of a biological attack can perform point detection and require active or passive sampling collection. The development of a stand-off detection system would be extremely valuable to minimize the risk and the possible consequences of the release of biological aerosols in the atmosphere. Biological samples can be analyzed by means of several optical techniques, covering a broad region of the electromagnetic spectrum. Strong evidence proved that the informative content of fluorescence spectra could provide good preliminary discrimination among those agents and it can also be obtained through stand-off measurements. Such a system necessitates a database and a mathematical method for the discrimination of the spectral signatures. In this work, we collected fluorescence emission spectra of the main BWA simulants, to implement a spectral signature database and apply the Universal Multi Event Locator (UMEL) statistical method. Our preliminary analysis, conducted in laboratory conditions with a standard UV lamp source, considers the main experimental setups influencing the fluorescence signature of some of the most commonly used BWA simulants. Our work represents a first step towards the implementation of a spectral database and a laser-based biological stand-off detection and identification technique.

Towards the implementation of a spectral data base for the detection of biological warfare agents

Murari A;
2014

Abstract

The deliberate use of biological warfare agents (BWA) and other pathogens can jeopardize the safety of population, fauna and flora, and represents a concrete concern from the military and civil perspective. At present, the only commercially available tools for fast warning of a biological attack can perform point detection and require active or passive sampling collection. The development of a stand-off detection system would be extremely valuable to minimize the risk and the possible consequences of the release of biological aerosols in the atmosphere. Biological samples can be analyzed by means of several optical techniques, covering a broad region of the electromagnetic spectrum. Strong evidence proved that the informative content of fluorescence spectra could provide good preliminary discrimination among those agents and it can also be obtained through stand-off measurements. Such a system necessitates a database and a mathematical method for the discrimination of the spectral signatures. In this work, we collected fluorescence emission spectra of the main BWA simulants, to implement a spectral signature database and apply the Universal Multi Event Locator (UMEL) statistical method. Our preliminary analysis, conducted in laboratory conditions with a standard UV lamp source, considers the main experimental setups influencing the fluorescence signature of some of the most commonly used BWA simulants. Our work represents a first step towards the implementation of a spectral database and a laser-based biological stand-off detection and identification technique.
2014
Istituto gas ionizzati - IGI - Sede Padova
Biological warfare agents
stand-off detection
UV
statistical analysis
Universal Multi Event Locator (UMEL)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/298222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact