We have previously shown that replication forks stall at a family of repeated sequences (FR) within the Epstein-Barr virus latent origin of replication oriP, both in a small plasmid and in the intact Epstein-Barr virus genome, Each of the 20 repeated sequences within the FR contains a binding site for Epstein-Barr nuclear antigen 1 (EBNA-1), the only viral protein required for latent replication. We showed that the EBNA-1 protein enhances the accumulation of paused replication forks at the FR. In this study, we have investigated a series of truncated EBNA-1 proteins to determine the portion of the EBNA-1 protein that is responsible for pausing of forks at the FR, Two-dimensional agarose gel electrophoresis was performed on the products of in vitro replication reactions in the presence of full-length EBNA-1 or proteins with various deletions to assess the extent of fork pausing at the FR. We conclude that a portion of the DNA binding domain is important for fork pausing, We also present evidence indicating that phosphorylation of the EBNA-1 protein or EBNA-1-truncated derivatives is not essential for pausing, To investigate the mechanism of EBNA-1-mediated pausing of replication forks, we asked whether EBNA-1 could inhibit the DNA unwinding activity of replicative helicases, We found that EBNA-1, when bound to the FR, inhibits DNA unwinding in vitro by SV40 T antigen and Escherichia coli dnaB helicases in an orientation-independent manner.

Role of the EBNA-1 protein in pausing of replication forks in the Epstein-Barr virus genome

1996

Abstract

We have previously shown that replication forks stall at a family of repeated sequences (FR) within the Epstein-Barr virus latent origin of replication oriP, both in a small plasmid and in the intact Epstein-Barr virus genome, Each of the 20 repeated sequences within the FR contains a binding site for Epstein-Barr nuclear antigen 1 (EBNA-1), the only viral protein required for latent replication. We showed that the EBNA-1 protein enhances the accumulation of paused replication forks at the FR. In this study, we have investigated a series of truncated EBNA-1 proteins to determine the portion of the EBNA-1 protein that is responsible for pausing of forks at the FR, Two-dimensional agarose gel electrophoresis was performed on the products of in vitro replication reactions in the presence of full-length EBNA-1 or proteins with various deletions to assess the extent of fork pausing at the FR. We conclude that a portion of the DNA binding domain is important for fork pausing, We also present evidence indicating that phosphorylation of the EBNA-1 protein or EBNA-1-truncated derivatives is not essential for pausing, To investigate the mechanism of EBNA-1-mediated pausing of replication forks, we asked whether EBNA-1 could inhibit the DNA unwinding activity of replicative helicases, We found that EBNA-1, when bound to the FR, inhibits DNA unwinding in vitro by SV40 T antigen and Escherichia coli dnaB helicases in an orientation-independent manner.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/298443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact