Polybenzimidazole (PBI) has become a popular polymer of choice for the preparation of membranes for potential use in high-temperature proton exchange membrane polymer fuel cells. Phosphoric acid-doped composite membranes of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with hafnium oxide nanofiller with varying content levels (0-18 wt %) have been prepared. The structureproperty relationships of both the undoped and acid-doped composite membranes are studied using thermogravimetric analysis, modulated differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the presence of nanofiller improves the thermal and mechanical properties of the undoped membranes and facilitates a greater level of acid uptake. The degree of acid dissociation within the acid-doped membranes is found to increase with increasing nanofiller content. This results in a conductivity, at 215 degrees C and a nanofiller level x = 0.04, of 9.0 x 10(-2) S cm(-1) for [PBI4N(HfO2)(x)](H3PO4)(y). This renders nanocomposite membranes of this type as good candidates for use in high temperature proton exchange membrane fuel cells (HT-PEMFCs).

Interplay between Composition, Structure, and Properties of New H3PO4-Doped PBI4N-HfO2 Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells

Pace G;
2015

Abstract

Polybenzimidazole (PBI) has become a popular polymer of choice for the preparation of membranes for potential use in high-temperature proton exchange membrane polymer fuel cells. Phosphoric acid-doped composite membranes of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with hafnium oxide nanofiller with varying content levels (0-18 wt %) have been prepared. The structureproperty relationships of both the undoped and acid-doped composite membranes are studied using thermogravimetric analysis, modulated differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the presence of nanofiller improves the thermal and mechanical properties of the undoped membranes and facilitates a greater level of acid uptake. The degree of acid dissociation within the acid-doped membranes is found to increase with increasing nanofiller content. This results in a conductivity, at 215 degrees C and a nanofiller level x = 0.04, of 9.0 x 10(-2) S cm(-1) for [PBI4N(HfO2)(x)](H3PO4)(y). This renders nanocomposite membranes of this type as good candidates for use in high temperature proton exchange membrane fuel cells (HT-PEMFCs).
2015
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
ACID DOPED POLYBENZIMIDAZOLE; POLYMER ELECTROLYTE MEMBRANES; CONDUCTING MEMBRANES; PHOSPHORIC-ACID; PEMFCS; NAFION; STABILITY; SOLVENTS; BLENDS; TI
File in questo prodotto:
File Dimensione Formato  
prod_333916-doc_103810.pdf

solo utenti autorizzati

Descrizione: Interplay between Composition, Structure, and Properties of H3PO4-Doped PBI4N-HfO2 Membranes for High-Temperature Proton Exchange Membrane Fuel Cells
Tipologia: Versione Editoriale (PDF)
Dimensione 6.28 MB
Formato Adobe PDF
6.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/298677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 51
social impact