Arbuscular mycorrhiza (AM) is one of the most spread symbiosis established between 80% of land plants and soil fungi belonging to the Glomeromycota. Molecular determinants involved in the formation of arbuscular mycorrhizas are still poorly understood. It has been demonstrated that in both Legumes and rice plants, several GRAS transcription factors are directly involved in both mycorrhizal signaling and colonization, namely NSP1, NSP2, RAM1, DELLA, DELLA-interacting protein (DIP1) and RAD1. Here, we focused on a rice GRAS protein, named Arbuscular Mycorrhizal 18 (OsAM18), previously identified as specifically expressed in rice mycorrhizal roots, and considered as an AM-specific gene. Phylogenetic analysis revealed that OsAM18 had a peculiar amino acid sequence, which clustered with putative SCARECROW proteins, even though it formed a separate branch. Allelic osma18 mutant displayed a drastic reduction in mycorrhizal colonization in-tensity and in arbuscule abundance, as mirrored by OsPT11 expression level. Non-mycorrhizal osam18 plants displayed a comparable plant development and root apparatus compared with the WT, while mycorrhizal osam18 mutants showed a reduction of plant biomass compared with mycorrhizal WT plants. The results suggest that OsAM18 is a rice protein, which is likely to have an impact not only on the colonization process and AM functionality, but also on the systemic effects of the AM symbiosis.

A rice GRAS gene has an impact on the success of arbuscular mycorrhizal colonization

Vallino M;Abbà S;
2015

Abstract

Arbuscular mycorrhiza (AM) is one of the most spread symbiosis established between 80% of land plants and soil fungi belonging to the Glomeromycota. Molecular determinants involved in the formation of arbuscular mycorrhizas are still poorly understood. It has been demonstrated that in both Legumes and rice plants, several GRAS transcription factors are directly involved in both mycorrhizal signaling and colonization, namely NSP1, NSP2, RAM1, DELLA, DELLA-interacting protein (DIP1) and RAD1. Here, we focused on a rice GRAS protein, named Arbuscular Mycorrhizal 18 (OsAM18), previously identified as specifically expressed in rice mycorrhizal roots, and considered as an AM-specific gene. Phylogenetic analysis revealed that OsAM18 had a peculiar amino acid sequence, which clustered with putative SCARECROW proteins, even though it formed a separate branch. Allelic osma18 mutant displayed a drastic reduction in mycorrhizal colonization in-tensity and in arbuscule abundance, as mirrored by OsPT11 expression level. Non-mycorrhizal osam18 plants displayed a comparable plant development and root apparatus compared with the WT, while mycorrhizal osam18 mutants showed a reduction of plant biomass compared with mycorrhizal WT plants. The results suggest that OsAM18 is a rice protein, which is likely to have an impact not only on the colonization process and AM functionality, but also on the systemic effects of the AM symbiosis.
2015
Istituto per la Protezione Sostenibile delle Piante - IPSP
Rice
Arbuscular Mycorrhizal Symbiosis
GRAS Proteins
Transcription Factors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/298724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact