Films of magnetic Ni@NiO core-shell nanoparticles (NPs, core diameter d cong 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core-shell NPs with desired magnetic properties.

Tunability of Exchange Bias in Ni@NiO Core-Shell Nanoparticles Obtained by Sequential Layer Deposition

Sergio D'Addato;Paola Luches;Sergio Valeri;Vincenzo Grillo;Enzo Rotunno;Anna Maria Ferretti;Elena Capetti;Alessandro Ponti
2015

Abstract

Films of magnetic Ni@NiO core-shell nanoparticles (NPs, core diameter d cong 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core-shell NPs with desired magnetic properties.
2015
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Istituto Nanoscienze - NANO
core/shell nanoparticles
Ni
NiO
exchange bias
physical synthesis
TEM
SQUID
File in questo prodotto:
File Dimensione Formato  
prod_334002-doc_103862.pdf

solo utenti autorizzati

Descrizione: Tunability of Exchange Bias in Ni@NiO Core-Shell Nanoparticles Obtained by Sequential Layer Deposition
Tipologia: Versione Editoriale (PDF)
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/298756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact