The organization of the electrons in the ground state is classified by means of topological invariants, defined as global properties of the wave function. Here we address the Chern number of a two-dimensional insulator and we show that the corresponding topological order can be mapped by means of a "topological marker," defined in r space, and which may vary in different regions of the same sample. Notably, this applies equally well to periodic and open boundary conditions. Simulations over a model Hamiltonian validate our theory.
Mapping topological order in coordinate space
Resta Raffaele
2011
Abstract
The organization of the electrons in the ground state is classified by means of topological invariants, defined as global properties of the wave function. Here we address the Chern number of a two-dimensional insulator and we show that the corresponding topological order can be mapped by means of a "topological marker," defined in r space, and which may vary in different regions of the same sample. Notably, this applies equally well to periodic and open boundary conditions. Simulations over a model Hamiltonian validate our theory.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.