In the last years, there has been an increasing concern on the emission of ultrafine particles in the atmosphere. A detailed study of formation and oxidation of these particles in the environment of the diesel cylinder presents many experimental difficulties due to the high temperatures, pressures and extremely reactive intermediate species. In this paper, in order to follow the different phases of diesel combustion process, high temporal and spatial resolution optical techniques were applied in the optically accessible chamber of diesel engine, at 2000 rpm and A/F=80:1 and 60:1. Simultaneous extinction, scattering and flame chemiluminescence measurements from UV to visible were carried out, in order to study the diesel combustion process from the droplet ignition to the formation of soot, through the growth of its precursors. These species were characterized as carbonaceous nanometric structures and their sizes were evaluated by scattering/extinction ratio according the Rayleigh theory.

Nanometric particle formation in optically accessible Diesel engine

Esposito Corcione F;Merola SS;Vaglieco BM
2001

Abstract

In the last years, there has been an increasing concern on the emission of ultrafine particles in the atmosphere. A detailed study of formation and oxidation of these particles in the environment of the diesel cylinder presents many experimental difficulties due to the high temperatures, pressures and extremely reactive intermediate species. In this paper, in order to follow the different phases of diesel combustion process, high temporal and spatial resolution optical techniques were applied in the optically accessible chamber of diesel engine, at 2000 rpm and A/F=80:1 and 60:1. Simultaneous extinction, scattering and flame chemiluminescence measurements from UV to visible were carried out, in order to study the diesel combustion process from the droplet ignition to the formation of soot, through the growth of its precursors. These species were characterized as carbonaceous nanometric structures and their sizes were evaluated by scattering/extinction ratio according the Rayleigh theory.
2001
Istituto Motori - IM - Sede Napoli
978-0-7680-0727-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact