Diagnosis of malaria must be rapid, accurate, simple to use, portable and low cost, as suggested by the World Health Organization (WHO). Despite recent efforts, the gold standard remains the light microscopy of a stained blood film. This method can detect low parasitemia and identify different species of Plasmodium. However, it is time consuming, it requires well trained microscopist and good instrumentation to minimize misinterpretation, thus the costs are considerable. Moreover, the equipment cannot be easily transported and installed. In this paper we propose a new technique named "secondary speckle sensing microscopy" ((SM)-M-3) based upon extraction of correlation based statistics of speckle patterns generated while illuminating red blood cells with a laser and inspecting them under a microscope. Then, using fuzzy logic ruling and principle component analysis, good quality of separation between healthy and infected red blood cells was demonstrated in preliminary experiments. The proposed technique can be used for automated high rate detection of malaria infected red blood cells. (c) 2012 Optical Society of America

Toward fast malaria detection by secondary speckle sensing microscopy

Cojoc Dan;
2012

Abstract

Diagnosis of malaria must be rapid, accurate, simple to use, portable and low cost, as suggested by the World Health Organization (WHO). Despite recent efforts, the gold standard remains the light microscopy of a stained blood film. This method can detect low parasitemia and identify different species of Plasmodium. However, it is time consuming, it requires well trained microscopist and good instrumentation to minimize misinterpretation, thus the costs are considerable. Moreover, the equipment cannot be easily transported and installed. In this paper we propose a new technique named "secondary speckle sensing microscopy" ((SM)-M-3) based upon extraction of correlation based statistics of speckle patterns generated while illuminating red blood cells with a laser and inspecting them under a microscope. Then, using fuzzy logic ruling and principle component analysis, good quality of separation between healthy and infected red blood cells was demonstrated in preliminary experiments. The proposed technique can be used for automated high rate detection of malaria infected red blood cells. (c) 2012 Optical Society of America
2012
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/298888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 27
social impact