Through the coupling of Synchrotron Radiation and Michelson interferometry, one may obtain in the terahertz (THz) range transmittance and reflectivity spectra with a signal-to-noise ratio (S/N) up to 10(3). In this paper we review the application of this spectroscopic technique to novel superconductors with an increasing degree of complexity: the single-gap boron-doped diamond; the isotropic multiband V3Si, where superconductivity opens two gaps at the Fermi energy; the CaAlSi superconductor, isostructural to MgB2, with a single gap in the hexagonal ab plane and two gaps along the orthogonal c axis.

Terahertz Spectroscopy of Novel Superconductors

Lupi;Stefano
2011

Abstract

Through the coupling of Synchrotron Radiation and Michelson interferometry, one may obtain in the terahertz (THz) range transmittance and reflectivity spectra with a signal-to-noise ratio (S/N) up to 10(3). In this paper we review the application of this spectroscopic technique to novel superconductors with an increasing degree of complexity: the single-gap boron-doped diamond; the isotropic multiband V3Si, where superconductivity opens two gaps at the Fermi energy; the CaAlSi superconductor, isostructural to MgB2, with a single gap in the hexagonal ab plane and two gaps along the orthogonal c axis.
2011
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/298893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact