The effect of external EGR on knock was evaluated using a CFR engine. Combustion pressure was sampled on a time basis. A band pass filter in the time domain was applied to the pressure cycles. Five knock indices were calculated for each combustion cycle. The problem to quantify knock intensity was focused. At this extent, measurements were carried out on standard iso-octane-n-heptane blends in the test conditions used for the determ of the Motor Method Octane Number (MON). Knock intensity was varied acting on compression ratio. For each index, the conditions of absence of knock were determined using motored cycles. The indices were compared and one of them, showing the lowest C.O.V., was selected for further measurements. The effect of EGR on test fuels having different composition was evaluated varying the compression ratio, at fixed ignition timing. In this way, the same level of detonation, obtained in the absence of EGR, was realized with different amounts of external EGR. Percent variation of compression ratio was used to compare the ability of fuels, having different octane number, to tolerate compression ratio increase in presence of EGR. In particular, the tests were carried out on a matrix of twelve fuels with three levels of EGR. The results show that with all tested fuels the percent increase of compression ratio is strongly dependent on EGR.

Evaluation of the effect of EGR on engine knock

Giglio V;Iorio B;Police G
1998

Abstract

The effect of external EGR on knock was evaluated using a CFR engine. Combustion pressure was sampled on a time basis. A band pass filter in the time domain was applied to the pressure cycles. Five knock indices were calculated for each combustion cycle. The problem to quantify knock intensity was focused. At this extent, measurements were carried out on standard iso-octane-n-heptane blends in the test conditions used for the determ of the Motor Method Octane Number (MON). Knock intensity was varied acting on compression ratio. For each index, the conditions of absence of knock were determined using motored cycles. The indices were compared and one of them, showing the lowest C.O.V., was selected for further measurements. The effect of EGR on test fuels having different composition was evaluated varying the compression ratio, at fixed ignition timing. In this way, the same level of detonation, obtained in the absence of EGR, was realized with different amounts of external EGR. Percent variation of compression ratio was used to compare the ability of fuels, having different octane number, to tolerate compression ratio increase in presence of EGR. In particular, the tests were carried out on a matrix of twelve fuels with three levels of EGR. The results show that with all tested fuels the percent increase of compression ratio is strongly dependent on EGR.
1998
Istituto Motori - IM - Sede Napoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact