In this paper we propose a discrete in continuous mathematical model for the morphogenesis of the posterior lateral line system in zebrafish. Our model follows closely the results obtained in recent biological experiments. We rely on a hybrid description: discrete for the cellular level and continuous for the molecular level. We prove the existence of steady solutions consistent with the formation of particular biological structure, the neuromasts. Dynamical numerical simulations are performed to show the behavior of the model and its qualitative and quantitative accuracy to describe the evolution of the cell aggregate.
A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line
Di Costanzo E;Natalini R;
2015
Abstract
In this paper we propose a discrete in continuous mathematical model for the morphogenesis of the posterior lateral line system in zebrafish. Our model follows closely the results obtained in recent biological experiments. We rely on a hybrid description: discrete for the cellular level and continuous for the molecular level. We prove the existence of steady solutions consistent with the formation of particular biological structure, the neuromasts. Dynamical numerical simulations are performed to show the behavior of the model and its qualitative and quantitative accuracy to describe the evolution of the cell aggregate.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


