We study an approach to tweet classification based on distant supervision, whereby we automatically transfer labels from one social medium to another. In particular, we apply classes assigned to YouTube videos to tweets linking to these videos. This provides for free a virtually unlimited number of labelled instances that can be used as training data. The experiments we have run show that a tweet classifier trained via these automatically labelled data substantially outperforms an analogous classifier trained with a limited amount of manually labelled data.

Distant supervision for tweet classification using YouTube labels

Sebastiani F
2015

Abstract

We study an approach to tweet classification based on distant supervision, whereby we automatically transfer labels from one social medium to another. In particular, we apply classes assigned to YouTube videos to tweets linking to these videos. This provides for free a virtually unlimited number of labelled instances that can be used as training data. The experiments we have run show that a tweet classifier trained via these automatically labelled data substantially outperforms an analogous classifier trained with a limited amount of manually labelled data.
2015
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Distant supervision
File in questo prodotto:
File Dimensione Formato  
prod_331191-doc_102179.pdf

solo utenti autorizzati

Descrizione: Distant supervision for tweet classification using YouTube labels
Tipologia: Versione Editoriale (PDF)
Dimensione 465.11 kB
Formato Adobe PDF
465.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_331191-doc_159215.pdf

accesso aperto

Descrizione: Distant supervision for tweet classification using YouTube labels
Tipologia: Versione Editoriale (PDF)
Dimensione 232.98 kB
Formato Adobe PDF
232.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299107
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact