Laser Induced Forward Transfer (LIFT) is a laser-based direct write technique which has been routinely employed for trials of the deposition of organic and inorganic compounds, polymers and biomaterials on various substrates for the realisation of devices such as OLEDs [1]. This single-shot printing approach, which allows a spatially controlled pixel-by-pixel deposition has been widely trialled for printing as it enables operation in a standard ambient environment, has the ability to print a wide range of materials, allows printing of multilayered stacks composed of dissimilar materials, allows printing on both structured and planar substrates, and beam shaping of the incident laser pulse is also possible to further control the size and shape of the deposited material. © 2011 IEEE.
Printing of amorphous and crystalline materials pre-machined using focussed ion beam patterning
Di Pietrantonio Fabio;Verona Enrico
2011
Abstract
Laser Induced Forward Transfer (LIFT) is a laser-based direct write technique which has been routinely employed for trials of the deposition of organic and inorganic compounds, polymers and biomaterials on various substrates for the realisation of devices such as OLEDs [1]. This single-shot printing approach, which allows a spatially controlled pixel-by-pixel deposition has been widely trialled for printing as it enables operation in a standard ambient environment, has the ability to print a wide range of materials, allows printing of multilayered stacks composed of dissimilar materials, allows printing on both structured and planar substrates, and beam shaping of the incident laser pulse is also possible to further control the size and shape of the deposited material. © 2011 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.