Nanocomposites formed by hard and soft magnetic phases are very promising for magnetic energy storage and biomedical applications. Highly challenging is the development of simple synthesis methods able to tune the phase composition and a thorough structural, morphologic and magnetic characterization in order to understand and optimize the interactions between hard and soft magnetic phases. Mainly depending on Fe:Pt atomic ratio, multi-phase or single phase FePt nanocomposites have been prepared by thermal treatment of core-shell FePt(Ag)@Fe3O4 nanoparticles at 750°C for 1h under flow of a Ar + 5% H2 gas mixture (H2 is necessary to reduce Fe2+ and Fe3+ ions of Fe3O4 to Fe0 atoms and the thermal treatment to form the crystalline soft and hard magnetic FePt phases). Performing Rietveld refinement of the XRD data as well as HR-TEM and electron diffraction analyses, the different phases have been singled out. Besides single phase hard L10 FePt and soft magnetic L12 Fe3Pt nanoparticles, two phase soft ?-FePt and ?-FePt and hard and soft magnetic L10 FePt and L12 FePt3 nanocomposites have been formed and the structure and morphology correlated to their magnetic behavior. Moreover, for possible applications, it is important to form stable nanoparticle layers; as-prepared FePt(Ag)@Fe3O4 nanoparticles have been chemically attached on a Si substrate, thermally annealed and the morphology, structure and magnetic properties of the layered nanoparticle sample investigated.

Tuning Hard and Soft Magnetic FePt Nanocomposites

L Suber;P Imperatori;E M Bauer;D Peddis;A Mezzi;S Kaciulis;A Notargiacomo;
2016

Abstract

Nanocomposites formed by hard and soft magnetic phases are very promising for magnetic energy storage and biomedical applications. Highly challenging is the development of simple synthesis methods able to tune the phase composition and a thorough structural, morphologic and magnetic characterization in order to understand and optimize the interactions between hard and soft magnetic phases. Mainly depending on Fe:Pt atomic ratio, multi-phase or single phase FePt nanocomposites have been prepared by thermal treatment of core-shell FePt(Ag)@Fe3O4 nanoparticles at 750°C for 1h under flow of a Ar + 5% H2 gas mixture (H2 is necessary to reduce Fe2+ and Fe3+ ions of Fe3O4 to Fe0 atoms and the thermal treatment to form the crystalline soft and hard magnetic FePt phases). Performing Rietveld refinement of the XRD data as well as HR-TEM and electron diffraction analyses, the different phases have been singled out. Besides single phase hard L10 FePt and soft magnetic L12 Fe3Pt nanoparticles, two phase soft ?-FePt and ?-FePt and hard and soft magnetic L10 FePt and L12 FePt3 nanocomposites have been formed and the structure and morphology correlated to their magnetic behavior. Moreover, for possible applications, it is important to form stable nanoparticle layers; as-prepared FePt(Ag)@Fe3O4 nanoparticles have been chemically attached on a Si substrate, thermally annealed and the morphology, structure and magnetic properties of the layered nanoparticle sample investigated.
2016
Istituto di fotonica e nanotecnologie - IFN
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
multi-phase magnetic nanoparticle synthesis; nanoparticle structural characterization; nanoparticle magnetic characterization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact