Accurate land cover maps provide critical information to scientists and decision-makers involved in urban monitoring and management. Satellite remote sensing can be used for producing mid-resolution urban maps at regional scale, especially when integrating multispectral optical information with SAR data. Starting from processing of Landsat 8 and TerraSAR-X multi-seasonal data (March-August 2014) covering a study area located in Lombardy region (Italy), we carried out an assessment of urban mapping performance using different non-parametric supervised classification algorithms and input features. The results show that best overall accuracy is generally reached with Random Forest (95.5%) and Support Vector Machines (93.6%), using both optical and SAR information. Adding X-band backscatter as input information produced an average accuracy improvement around 3%. Among various land cover classes, detection errors were concentrated on urban sparse fabric, and vegetated land cover, especially when SAR features are not used as input.
Integration of multi-seasonal Landsat 8 and TerraSAR-X data for urban mapping: An assessment
Villa P;Fontanelli G;Crema A
2015
Abstract
Accurate land cover maps provide critical information to scientists and decision-makers involved in urban monitoring and management. Satellite remote sensing can be used for producing mid-resolution urban maps at regional scale, especially when integrating multispectral optical information with SAR data. Starting from processing of Landsat 8 and TerraSAR-X multi-seasonal data (March-August 2014) covering a study area located in Lombardy region (Italy), we carried out an assessment of urban mapping performance using different non-parametric supervised classification algorithms and input features. The results show that best overall accuracy is generally reached with Random Forest (95.5%) and Support Vector Machines (93.6%), using both optical and SAR information. Adding X-band backscatter as input information produced an average accuracy improvement around 3%. Among various land cover classes, detection errors were concentrated on urban sparse fabric, and vegetated land cover, especially when SAR features are not used as input.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


