Autologous and allogenic bone grafts are considered as materials of choice for bone reconstructive surgery, but limited availability, risks of transmittable diseases and inconsistent clinical performances have prompted the development of alternative biomaterials. The present work compares the bone regeneration potential of a soybean based bone filler (SB bone filler) in comparison to a commercial 50:50 poly(D: ,L: lactide-glycolide)-based bone graft (Fisiograft((R)) gel) when implanted into a critical size defect (6-mm diameter, 10-mm length) in rabbit distal femurs. The histomorphometric and microhardness analyses of femoral condyles 4, 8, 16 and 24 weeks after surgery showed that no significant difference was found in the percentage of both bone repair and bone in-growth in the external, medium and inner defect areas. The SB filler-treated defects showed significantly higher outer bone formation and microhardness results at 24 weeks than Fisiograft((R)) gel (P < 0.05). Soybean-based biomaterials clearly promoted bone repair through a mechanism of action that is likely to involve both the scaffolding role of the biomaterial for osteoblasts and the induction of their differentiation.

Bone regeneration potential of a soybean-based filler: Experimental study in a rabbit cancellous bone defects

Nicolais L;
2010

Abstract

Autologous and allogenic bone grafts are considered as materials of choice for bone reconstructive surgery, but limited availability, risks of transmittable diseases and inconsistent clinical performances have prompted the development of alternative biomaterials. The present work compares the bone regeneration potential of a soybean based bone filler (SB bone filler) in comparison to a commercial 50:50 poly(D: ,L: lactide-glycolide)-based bone graft (Fisiograft((R)) gel) when implanted into a critical size defect (6-mm diameter, 10-mm length) in rabbit distal femurs. The histomorphometric and microhardness analyses of femoral condyles 4, 8, 16 and 24 weeks after surgery showed that no significant difference was found in the percentage of both bone repair and bone in-growth in the external, medium and inner defect areas. The SB filler-treated defects showed significantly higher outer bone formation and microhardness results at 24 weeks than Fisiograft((R)) gel (P < 0.05). Soybean-based biomaterials clearly promoted bone repair through a mechanism of action that is likely to involve both the scaffolding role of the biomaterial for osteoblasts and the induction of their differentiation.
2010
Bone regeneration
soybean-based filler
cancellous bone defects
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299553
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact