Electro-conducting doped polypyrrole was deposited by in situ oxidative polymerisation on PET non-wovens. Thermal properties were evaluated by means of DSC and TG in nitrogen and air. Flame resistance tests reveal that coated PET fibres resist to direct contact with fire. By thermal analysis, it was found that PPy reduces the temperature at which thermo-oxidative degradation of PET occurs. Polypyrrole-coated PET non-wovens were heated above the melting point of PET for 30 min. After the heating the fibres become brittle and frail, but SEM observations revealed that they maintained their fibrous shape. A loss of chlorine was found because of intense heating.

Thermal stability and flame resistance of polypyrrole-coated PET fibres

Varesano A;Tonin C;
2008

Abstract

Electro-conducting doped polypyrrole was deposited by in situ oxidative polymerisation on PET non-wovens. Thermal properties were evaluated by means of DSC and TG in nitrogen and air. Flame resistance tests reveal that coated PET fibres resist to direct contact with fire. By thermal analysis, it was found that PPy reduces the temperature at which thermo-oxidative degradation of PET occurs. Polypyrrole-coated PET non-wovens were heated above the melting point of PET for 30 min. After the heating the fibres become brittle and frail, but SEM observations revealed that they maintained their fibrous shape. A loss of chlorine was found because of intense heating.
2008
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
flame resistance
PET
polypyrrole
thermal analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? ND
social impact