The volunteer computing paradigm, along with the tailored use of peer-to-peer communication, has recently proven capable of solving a wide area of data-intensive problems in a distributed scenario. The Mining@Home framework is based on these paradigms and it has been implemented to run a wide range of distributed data mining applications. The efficiency and scalability of the architecture can be fully exploited when the overall task can be partitioned into distinct jobs that may be executed in parallel, and input data can be reused, which naturally leads to the use of data cachers. This paper explores the opportunities offered by Mining@Home for coping with the discovery of classifiers through the use of the bagging approach: multiple learners are used to compute models from the same input data, so as to extract a final model with high statistical accuracy. Analysis focuses on the evaluation of experiments performed in a real distributed environment, enriched with simulation assessment-to evaluate very large environments-and with an analytical investigation based on the iso-efficiency methodology. An extensive set of experiments allowed to analyze a number of heterogeneous scenarios, with different problem sizes, which helps to improve the performance by appropriately tuning the number of workers and the number of interconnected domains.

Distributed volunteer computing for solving ensemble learning problems

Cesario Eugenio;Mastroianni Carlo;
2016

Abstract

The volunteer computing paradigm, along with the tailored use of peer-to-peer communication, has recently proven capable of solving a wide area of data-intensive problems in a distributed scenario. The Mining@Home framework is based on these paradigms and it has been implemented to run a wide range of distributed data mining applications. The efficiency and scalability of the architecture can be fully exploited when the overall task can be partitioned into distinct jobs that may be executed in parallel, and input data can be reused, which naturally leads to the use of data cachers. This paper explores the opportunities offered by Mining@Home for coping with the discovery of classifiers through the use of the bagging approach: multiple learners are used to compute models from the same input data, so as to extract a final model with high statistical accuracy. Analysis focuses on the evaluation of experiments performed in a real distributed environment, enriched with simulation assessment-to evaluate very large environments-and with an analytical investigation based on the iso-efficiency methodology. An extensive set of experiments allowed to analyze a number of heterogeneous scenarios, with different problem sizes, which helps to improve the performance by appropriately tuning the number of workers and the number of interconnected domains.
2016
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Distributed data mining
Ensemble learning
Peer-to-peer
Volunteer computing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact