The spectroscopic properties and liquid structure of pure tri-n-butyl phosphate (TBP) and FeCl3/TBP solutions have been investigated by Uv-Vis and Raman spectroscopies, X-ray diffraction and conductometry. Uv-Vis and Raman spectra, supported by conductometric measurements, consistently indicate that the solubilized salt is present mostly as TBP (n) [FeCl3 -aEuro parts per thousand n ] (n+) and FeCl4 (-) complex ions due to specific interaction with the TBP phosphate group. Thanks to this interaction, a high amount of salt (up to 13 % w/w) can be dissolved despite the relatively low dielectric constant of TBP. The X-ray diffractogram of pure TBP has been interpreted in terms of three main contributions which can be attributed to spatial pair correlations between atoms of interacting TBP molecules. In the presence of increasing FeCl3 amounts, it has been observed a progressive structuring effect, exerted by the dissolved salt, on the layers of opportunely oriented TBP molecules due to the formation of the complex ionic species. By simple treatment with NaBH4, the synthesis of Fe nanoparticles has been achieved. The absence of water, the easiness of preparation, the high amount of salt which can be suspended and the peculiar physico-chemical properties of such systems are all elements worth of note for the fields of nanoparticle synthesis and for specialized technological applications.

Spectroscopic and structural characterization of pure and FeCl3-containing tri-n-butyl phosphate

Calandra Pietro;de Caro Tilde;Caschera Daniela;Lombardo Domenico;
2015

Abstract

The spectroscopic properties and liquid structure of pure tri-n-butyl phosphate (TBP) and FeCl3/TBP solutions have been investigated by Uv-Vis and Raman spectroscopies, X-ray diffraction and conductometry. Uv-Vis and Raman spectra, supported by conductometric measurements, consistently indicate that the solubilized salt is present mostly as TBP (n) [FeCl3 -aEuro parts per thousand n ] (n+) and FeCl4 (-) complex ions due to specific interaction with the TBP phosphate group. Thanks to this interaction, a high amount of salt (up to 13 % w/w) can be dissolved despite the relatively low dielectric constant of TBP. The X-ray diffractogram of pure TBP has been interpreted in terms of three main contributions which can be attributed to spatial pair correlations between atoms of interacting TBP molecules. In the presence of increasing FeCl3 amounts, it has been observed a progressive structuring effect, exerted by the dissolved salt, on the layers of opportunely oriented TBP molecules due to the formation of the complex ionic species. By simple treatment with NaBH4, the synthesis of Fe nanoparticles has been achieved. The absence of water, the easiness of preparation, the high amount of salt which can be suspended and the peculiar physico-chemical properties of such systems are all elements worth of note for the fields of nanoparticle synthesis and for specialized technological applications.
2015
Istituto per i Processi Chimico-Fisici - IPCF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
FeCl3
Tri-n-butyl phosphate
Self-assembling
Local structures
Amphiphilic solvents
File in questo prodotto:
File Dimensione Formato  
prod_341215-doc_106747.pdf

solo utenti autorizzati

Descrizione: Spectroscopic and structural characterization of pure and FeCl3-containing tri-n-butyl phosphate
Tipologia: Versione Editoriale (PDF)
Dimensione 767.86 kB
Formato Adobe PDF
767.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact