Anaerobic digestion has been recognized as the most appropriate stabilization technology for approaching sludge reuse task, in part because of the methane production involved. The mesophilic anaerobic processing train can be upgraded by adding a pre-treatment step or by increasing the digestion temperature to thermophilic conditions. In this study, semi-continuous mesophilic (MAD) and thermophilic (TAD) anaerobic digesters were operated for 180 days at low (0.7-1.0 kg VS/m(3) d), medium (1.4-1.8 kg VS/m(3) d) and high (2.8-3.7 kg VS/m(3) d) organic loading rates (OLRs). The impact of ultrasound and thermal hydrolysis pre-treatments on the mesophilic and thermophilic digestion efficiency, respectively, was assessed by performing parallel digestion tests. The increase of soluble COD (Chemical Oxygen Demand) and colloidal surface charge after the sludge pre-treatments suggested biopolymers solubilization and changes in surface floc properties. Thermal hydrolysis enhanced the release of lipids and long chain fatty acids, while ultrasounds application resulted in proteins being the main component of the released matter. Operating the digesters at OLRs between 0.7 and 1.4 kg VS/m(3) d the methane conversion rate was not significantly affected by the temperature increase up to thermophilic conditions, whereas the integration of the pre-treatments accelerated the organic conversions, resulting in a noticeable methane gain (up to +51%). Conversely, at higher organic loads, the TAD yields were significantly higher with respect to the MAD ones, assuring the sustainable economic benefit of operating smaller anaerobic digesters to obtain higher methane productions. Nevertheless, the colloidal charge increase during thermophilic digestion impaired the sludge filterability much more rapidly than in mesophilic conditions. (C) 2015 Elsevier ay. All rights reserved.

The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: Role of the organic load

Braguglia Camilla Maria;Gianico Andrea;Gallipoli Agata;Mininni Giuseppe
2015

Abstract

Anaerobic digestion has been recognized as the most appropriate stabilization technology for approaching sludge reuse task, in part because of the methane production involved. The mesophilic anaerobic processing train can be upgraded by adding a pre-treatment step or by increasing the digestion temperature to thermophilic conditions. In this study, semi-continuous mesophilic (MAD) and thermophilic (TAD) anaerobic digesters were operated for 180 days at low (0.7-1.0 kg VS/m(3) d), medium (1.4-1.8 kg VS/m(3) d) and high (2.8-3.7 kg VS/m(3) d) organic loading rates (OLRs). The impact of ultrasound and thermal hydrolysis pre-treatments on the mesophilic and thermophilic digestion efficiency, respectively, was assessed by performing parallel digestion tests. The increase of soluble COD (Chemical Oxygen Demand) and colloidal surface charge after the sludge pre-treatments suggested biopolymers solubilization and changes in surface floc properties. Thermal hydrolysis enhanced the release of lipids and long chain fatty acids, while ultrasounds application resulted in proteins being the main component of the released matter. Operating the digesters at OLRs between 0.7 and 1.4 kg VS/m(3) d the methane conversion rate was not significantly affected by the temperature increase up to thermophilic conditions, whereas the integration of the pre-treatments accelerated the organic conversions, resulting in a noticeable methane gain (up to +51%). Conversely, at higher organic loads, the TAD yields were significantly higher with respect to the MAD ones, assuring the sustainable economic benefit of operating smaller anaerobic digesters to obtain higher methane productions. Nevertheless, the colloidal charge increase during thermophilic digestion impaired the sludge filterability much more rapidly than in mesophilic conditions. (C) 2015 Elsevier ay. All rights reserved.
2015
Istituto di Ricerca Sulle Acque - IRSA
Sludge pre-treatment
Organic loading rate
Thermophilic conditions
Anaerobic digestion
Surface charge
Filterability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 56
social impact