Recent idealized studies examined the sensitivity of topographically forced rain and snowfall to changes in mountain geometry and upwind sounding in moist stable and neutral environments. These studies were restricted by necessity to small ensembles of carefully chosen simulations. Research presented here extends earlier studies by utilizing a Bayesian Markov chain Monte Carlo (MCMC) algorithm to create a large ensemble of simulations, all of which produce precipitation concentrated on the upwind slope of an idealized Gaussian bell-shaped mountain. MCMC-based probabilistic analysis yields information about the combinations of sounding and mountain geometry favorable for upslope rain, as well as the sensitivity of orographic precipitation to changes in mountain geometry and upwind sounding. Exploration of the multivariate sensitivity of rainfall to changes in parameters also reveals a nonunique solution: multiple combinations of flow, topography, and environment produce similar surface rainfall amount and distribution. Finally, the results also divulge that the nonunique solutions have different sensitivity profiles, and that changes in observation uncertainty also alter model sensitivity to input parameters.

Bayesian Exploration of Multivariate Orographic Precipitation Sensitivity for Moist Stable and Neutral Flows

Miglietta, M.;
2015

Abstract

Recent idealized studies examined the sensitivity of topographically forced rain and snowfall to changes in mountain geometry and upwind sounding in moist stable and neutral environments. These studies were restricted by necessity to small ensembles of carefully chosen simulations. Research presented here extends earlier studies by utilizing a Bayesian Markov chain Monte Carlo (MCMC) algorithm to create a large ensemble of simulations, all of which produce precipitation concentrated on the upwind slope of an idealized Gaussian bell-shaped mountain. MCMC-based probabilistic analysis yields information about the combinations of sounding and mountain geometry favorable for upslope rain, as well as the sensitivity of orographic precipitation to changes in mountain geometry and upwind sounding. Exploration of the multivariate sensitivity of rainfall to changes in parameters also reveals a nonunique solution: multiple combinations of flow, topography, and environment produce similar surface rainfall amount and distribution. Finally, the results also divulge that the nonunique solutions have different sensitivity profiles, and that changes in observation uncertainty also alter model sensitivity to input parameters.
2015
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Circulation
Dynamics
Mathematical and statistical techniques
Bayesian methods
Models and modeling
Cloud resolving models
File in questo prodotto:
File Dimensione Formato  
prod_340152-doc_106393.pdf

accesso aperto

Descrizione: This is the Submitted version of the article published in DOI: 10.1175/MWR-D-15-0036.1
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF Visualizza/Apri
Tushaus_MWR.pdf

solo utenti autorizzati

Descrizione: This is the Version of Record of the article published in DOI: 10.1175/MWR-D-15-0036.1
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact