We investigate the effects of dissipative air drag on the dynamics of electrified jets in the initial stage of the electrospinning process. The main idea is to use a Brownian noise to model air drag effects on the uniaxial elongation of the jets. The developed numerical model is used to probe the dynamics of electrified polymer jets at different conditions of air drag force, showing that the dynamics of the charged jet is strongly biased by the presence of air drag forces. This study provides prospective beneficial implications for improving forthcoming electrospinning experiments. (C) 2015 Elsevier Ltd. All rights reserved.

Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag

Lauricella Marco;Pontrelli Giuseppe;Pisignano Dario;Succi Sauro
2015

Abstract

We investigate the effects of dissipative air drag on the dynamics of electrified jets in the initial stage of the electrospinning process. The main idea is to use a Brownian noise to model air drag effects on the uniaxial elongation of the jets. The developed numerical model is used to probe the dynamics of electrified polymer jets at different conditions of air drag force, showing that the dynamics of the charged jet is strongly biased by the presence of air drag forces. This study provides prospective beneficial implications for improving forthcoming electrospinning experiments. (C) 2015 Elsevier Ltd. All rights reserved.
2015
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto Nanoscienze - NANO
Electrospinning
Air drag
Viscoelasticity
Nanofibers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact