Whereas the basic physical mechanisms leading to the onset and evolution of tornadoes have been well established, some progress can still be useful to identify the conditions supporting the development of a tornado towards a violent or catastrophic stage, as well as possible specific and observable events triggering the onset of a tornado in a generally favorable atmospheric environment. On the basis of an assumed global anisotropy of the physical spaceand the associated non-gauge byuon theory, an additional mechanism of energy accumulation in the process of development of a tornado to its mature stage is proposedand its consistency is checked against a dataset of individual tornadoes as well as of tornado outbreaks. The results point to a significant link between the angle formed by the cosmological vector potentialrepresenting the global anisotropy of the physical space and the surface tangent to the local Earth's surface and the occurrence of the most energetic tornadoes; as a consequence, such tornadoes are shown to occur only at specific times of the day depending on latitude, longitude and day of the year. Moreover, a further additional mechanism is proposed for the early origin of a tornado, on the basis of the interaction of a large peak current lightning discharge with the cosmological vector potential introduced by the byuon theory. It is shown how, in the framework of the proposed theory, a fraction of the energy of a tornado at its onset stage can originate from the self-energy associated with the formation of the physical space of elementary particles located along the lightning discharge. The verification of the proposed mechanism for the onset of tornadoes is delayed to later time when suitable data sets will be available.

Tornadoes and the global anisotropy of the physical space

Francesco
2014

Abstract

Whereas the basic physical mechanisms leading to the onset and evolution of tornadoes have been well established, some progress can still be useful to identify the conditions supporting the development of a tornado towards a violent or catastrophic stage, as well as possible specific and observable events triggering the onset of a tornado in a generally favorable atmospheric environment. On the basis of an assumed global anisotropy of the physical spaceand the associated non-gauge byuon theory, an additional mechanism of energy accumulation in the process of development of a tornado to its mature stage is proposedand its consistency is checked against a dataset of individual tornadoes as well as of tornado outbreaks. The results point to a significant link between the angle formed by the cosmological vector potentialrepresenting the global anisotropy of the physical space and the surface tangent to the local Earth's surface and the occurrence of the most energetic tornadoes; as a consequence, such tornadoes are shown to occur only at specific times of the day depending on latitude, longitude and day of the year. Moreover, a further additional mechanism is proposed for the early origin of a tornado, on the basis of the interaction of a large peak current lightning discharge with the cosmological vector potential introduced by the byuon theory. It is shown how, in the framework of the proposed theory, a fraction of the energy of a tornado at its onset stage can originate from the self-energy associated with the formation of the physical space of elementary particles located along the lightning discharge. The verification of the proposed mechanism for the onset of tornadoes is delayed to later time when suitable data sets will be available.
2014
Istituto di Biometeorologia - IBIMET - Sede Firenze
Tornado
Fujita scale
Anisotropy of the physical space
Byuon theory
Lightning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact