The aim of this work was to study the changes during 15. days in the monoterpene emission rates of the Mediterranean shrub rosemary (Rosmarinus officinalis L.), in response to increasing drought stress and fertilisation using two different composts derived from livestock anaerobic digestates (cattle and pig slurry). Drought stress considerably reduced photosynthetic rates, stomatal conductance and isoprenoid emissions and also induced a change in blend composition. In the drought stressed rosemary plants, a positive relationship of non-oxygenated monoterpene emissions and a negative relationship of oxygenated monoterpene with photosynthesis were observed, indicating a different control mechanism over the emissions of the two types of isoprenoids. The emission of non-oxygenated monoterpenes seemed to depend more on photosynthesis and "de novo" synthesis, whereas emission of oxygenate monoterpenes was more dependent on volatilisation from storage, mainly driven by cumulative temperatures. In the short term, the addition of composted organic materials to the soil did not induce a significant effect on isoprenoid emission rates in the rosemary plants. However, the effect of the interaction between fertilisation and seasonality on isoprenoid emission rates was influenced by the amendment origin. Also, we emphasized changes in potential isoprenoid emission factors throughout the experiment, probably indicating changes in the leaf developmental stage.

Drought and soil amendment effects on monoterpene emission in rosemary plants

Muzzini V;Loreto F;
2015

Abstract

The aim of this work was to study the changes during 15. days in the monoterpene emission rates of the Mediterranean shrub rosemary (Rosmarinus officinalis L.), in response to increasing drought stress and fertilisation using two different composts derived from livestock anaerobic digestates (cattle and pig slurry). Drought stress considerably reduced photosynthetic rates, stomatal conductance and isoprenoid emissions and also induced a change in blend composition. In the drought stressed rosemary plants, a positive relationship of non-oxygenated monoterpene emissions and a negative relationship of oxygenated monoterpene with photosynthesis were observed, indicating a different control mechanism over the emissions of the two types of isoprenoids. The emission of non-oxygenated monoterpenes seemed to depend more on photosynthesis and "de novo" synthesis, whereas emission of oxygenate monoterpenes was more dependent on volatilisation from storage, mainly driven by cumulative temperatures. In the short term, the addition of composted organic materials to the soil did not induce a significant effect on isoprenoid emission rates in the rosemary plants. However, the effect of the interaction between fertilisation and seasonality on isoprenoid emission rates was influenced by the amendment origin. Also, we emphasized changes in potential isoprenoid emission factors throughout the experiment, probably indicating changes in the leaf developmental stage.
2015
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Abi
Anaerobic digestate derived-compost
Biogenic volatile organic compounds
Organic amendments
Rosmarinus officinalis L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact