The mineral particles are classified in different textural classes according to their size. Reflectance spectrometry and spectra can be valid instruments to classify the soils according to their texture. This is possible using different statistical methods, for example, discriminant analysis. However, other multivariate methods, like multinomial logistic regression, can be used, but the presence of multicollinearity among explicative variables could affect the estimation of the parameters. The solution proposed to remedy this problem is an alternative way to apply the multinomial logit model. To evaluate its performances, we compare the results with both classical multinomial logit and discriminant analysis ones.

Principal component multinomial regression and spectrometry to predict soil texture

2015

Abstract

The mineral particles are classified in different textural classes according to their size. Reflectance spectrometry and spectra can be valid instruments to classify the soils according to their texture. This is possible using different statistical methods, for example, discriminant analysis. However, other multivariate methods, like multinomial logistic regression, can be used, but the presence of multicollinearity among explicative variables could affect the estimation of the parameters. The solution proposed to remedy this problem is an alternative way to apply the multinomial logit model. To evaluate its performances, we compare the results with both classical multinomial logit and discriminant analysis ones.
2015
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
spectrom
File in questo prodotto:
File Dimensione Formato  
prod_340672-doc_106589.pdf

solo utenti autorizzati

Descrizione: Principal component multinomial regression and spectrometry to predict soil texture
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 263.57 kB
Formato Adobe PDF
263.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/299936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 8
social impact