In this paper, we propose a novel method for accelerating the computation of geodesic distances over arbitrary manifold triangulated surfaces. The method is based on a preprocessing step where we build a data structure. This allows to store arbitrary complex distance metrics. We show that, by exploiting the precomputed data, the proposed method is significantly faster than the classical Dijkstra algorithm for the computation of point to point distances. Moreover, as we precompute exact geodesic distances, the proposed approach can be more accurate than state-of-the-art approximations.

Compression and querying of arbitrary geodesic distances

Banterle F;Pietroni N;Malomo L;Cignoni P;Scopigno R
2015

Abstract

In this paper, we propose a novel method for accelerating the computation of geodesic distances over arbitrary manifold triangulated surfaces. The method is based on a preprocessing step where we build a data structure. This allows to store arbitrary complex distance metrics. We show that, by exploiting the precomputed data, the proposed method is significantly faster than the classical Dijkstra algorithm for the computation of point to point distances. Moreover, as we precompute exact geodesic distances, the proposed approach can be more accurate than state-of-the-art approximations.
2015
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-319-23230-0
Geodesics
File in questo prodotto:
File Dimensione Formato  
prod_340210-doc_106436.pdf

accesso aperto

Descrizione: Compression and querying of arbitrary geodesic distances
Tipologia: Versione Editoriale (PDF)
Dimensione 5.35 MB
Formato Adobe PDF
5.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/300293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact