Despite to the importance on the charge carrier injection and transport at organic/metal interface, there is yet an incomplete estimation of the various contribution to the overall dipole. This work shows how the mapping of the surface potential performed by Kelvin Probe Force Microscopy (KPFM) allows the direct observation of the interface dipole within an organic/metal multi-layered structure. Moreover, we show how the sub-surface sensitivity of the KPFM depends on the thickness and surface coverage of the metallic layer. This paper proposes a way to control the surface potential of the exposed layer of an hybrid layered system by controlling the interface dipole at the organic/metal interface as a function of the nanometer scale thickness and the surface coverage of the metallic layer. We obtained a layered system constituted by repeated sequence of a copolymer film, poly(nbutylacrylate)-b-polyacrilic acid, and Au layer. We compared the results obtained by means of scanning probe microscopy technique with the results of the KPFM technique, that allows us to obtain high-contrast images of the underlying layer of copolymer behind a typical threshold, on the nanoscale, of the thickness of the metal layer. We considered the effect of the morphology of the gold layer on the covered area at different thicknesses by using the scanning electron microscopy technique. This finding represents a step forward towards the using of dynamic atomic force microscopy based characterization to explore the electrical properties of the sub-surface states of layered nanohybrid, that is a critical point for nanohybrid applications in sensors and energy storage devices.

Emerging interface dipole versus screening effect in copolymermetal nano-layered systems

V Torrisi;A Liscio;
2015

Abstract

Despite to the importance on the charge carrier injection and transport at organic/metal interface, there is yet an incomplete estimation of the various contribution to the overall dipole. This work shows how the mapping of the surface potential performed by Kelvin Probe Force Microscopy (KPFM) allows the direct observation of the interface dipole within an organic/metal multi-layered structure. Moreover, we show how the sub-surface sensitivity of the KPFM depends on the thickness and surface coverage of the metallic layer. This paper proposes a way to control the surface potential of the exposed layer of an hybrid layered system by controlling the interface dipole at the organic/metal interface as a function of the nanometer scale thickness and the surface coverage of the metallic layer. We obtained a layered system constituted by repeated sequence of a copolymer film, poly(nbutylacrylate)-b-polyacrilic acid, and Au layer. We compared the results obtained by means of scanning probe microscopy technique with the results of the KPFM technique, that allows us to obtain high-contrast images of the underlying layer of copolymer behind a typical threshold, on the nanoscale, of the thickness of the metal layer. We considered the effect of the morphology of the gold layer on the covered area at different thicknesses by using the scanning electron microscopy technique. This finding represents a step forward towards the using of dynamic atomic force microscopy based characterization to explore the electrical properties of the sub-surface states of layered nanohybrid, that is a critical point for nanohybrid applications in sensors and energy storage devices.
2015
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
KPFM
Au layer
contact potential difference
thickness
nanoscale
surface coverage
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/300605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact