Assessing environmental risk is useful for preventing adverse effects on human health in highly polluted cities. We design a criterion for environmental monitoring based on an attribute control chart for the number of dangerous contaminant levels when the concentration to be monitored follows a Birnbaum-Saunders distribution. This distribution is being widely applied to environmental data. We provide a novel justification for its usage in environmental sciences. The control coefficient and the minimum inspection concentration for the designed criterion are determined to yield the specified in-control average run length, whereas the out-of-control case is obtained according to a shift in the target mean. A simulation study is conducted to evaluate the proposed criterion, which reports its performance to provide earlier alerts of out-of-control processes. An application with real-world environmental data is carried out to validate its coherence with what is reported by the health authority.

A criterion for environmental assessment using Birnbaum-Saunders attribute control charts

F Ruggeri;
2015

Abstract

Assessing environmental risk is useful for preventing adverse effects on human health in highly polluted cities. We design a criterion for environmental monitoring based on an attribute control chart for the number of dangerous contaminant levels when the concentration to be monitored follows a Birnbaum-Saunders distribution. This distribution is being widely applied to environmental data. We provide a novel justification for its usage in environmental sciences. The control coefficient and the minimum inspection concentration for the designed criterion are determined to yield the specified in-control average run length, whereas the out-of-control case is obtained according to a shift in the target mean. A simulation study is conducted to evaluate the proposed criterion, which reports its performance to provide earlier alerts of out-of-control processes. An application with real-world environmental data is carried out to validate its coherence with what is reported by the health authority.
2015
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Average run length
Inspection point
Moment estimation
Monte Carlo simulation
Np control chart
R software
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/300606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? ND
social impact