The fragmentation of the 2Br-pyrimidine molecule following direct valence photoionization or inner shell excitation has been studied by electron-ion coincidence experiments. 2Br-pyrimidine has been chosen as a model for the class of pyrimidinic building blocks of three nucleic acids and several radiosensitizers. It is known that the site- and state-localization of energy deposition, typical of inner shell excitation, results in the enhancement of the total ion yield as well as in changes in the relative intensity of the different fragmentation channels. Here we address the question of the origin of this selective fragmentation by using electron-ion coincidence techniques. The results show that the fragmentation is strongly selective in the final singly charged ion state, independently of the process that leads to the population of that state, and the dominant fragmentation patterns correlate with the nearest appearance potential.

State selected photofragmentation of halopyrimidines

P Bolognesi;L Avaldi
2015

Abstract

The fragmentation of the 2Br-pyrimidine molecule following direct valence photoionization or inner shell excitation has been studied by electron-ion coincidence experiments. 2Br-pyrimidine has been chosen as a model for the class of pyrimidinic building blocks of three nucleic acids and several radiosensitizers. It is known that the site- and state-localization of energy deposition, typical of inner shell excitation, results in the enhancement of the total ion yield as well as in changes in the relative intensity of the different fragmentation channels. Here we address the question of the origin of this selective fragmentation by using electron-ion coincidence techniques. The results show that the fragmentation is strongly selective in the final singly charged ion state, independently of the process that leads to the population of that state, and the dominant fragmentation patterns correlate with the nearest appearance potential.
2015
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
molecular fragmentation
biomolecules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/300967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact