We study quantum transport of matter waves in anisotropic three-dimensional disorder. First, we show that structured correlations can induce rich effects, such as anisotropic suppression of the white-noise limit and inversion of the transport anisotropy. Second, we show that the localization threshold (mobility edge) is strongly affected by a disorder-induced shift of the energy states, which we calculate. Our work is directly relevant to ultracold-matter waves in optical disorder, and implications on recent experiments are discussed. It also offers scope for further studies of anisotropy effects in other systems with controlled disorder, where counterparts of the discussed effects can be expected.

Matter wave transport and Anderson localization in anisotropic three-dimensional disorder

2012

Abstract

We study quantum transport of matter waves in anisotropic three-dimensional disorder. First, we show that structured correlations can induce rich effects, such as anisotropic suppression of the white-noise limit and inversion of the transport anisotropy. Second, we show that the localization threshold (mobility edge) is strongly affected by a disorder-induced shift of the energy states, which we calculate. Our work is directly relevant to ultracold-matter waves in optical disorder, and implications on recent experiments are discussed. It also offers scope for further studies of anisotropy effects in other systems with controlled disorder, where counterparts of the discussed effects can be expected.
2012
Ultracold gases
disordered systems
Anderson localization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/301309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 34
social impact