Boron neutron capture therapy (BNCT) is a promising binary modality used to treat malignant brain gliomas. To optimize BNCT effectiveness a non-invasive method is needed to monitor the spatial distribution of BNCT carriers in order to estimate the optimal timing for neutron irradiation. In this study, in vivo spatial distribution mapping and pharmacokinetics evaluation of the (19)F-labelled boronophenylalanine (BPA) were performed using (19)F magnetic resonance imaging ((19)F MRI) and (19)F magnetic resonance spectroscopy ((19)F MRS). Characteristic uptake of (19)F-BPA in C6 glioma showed a maximum at 2.5 h after compound infusion as confirmed by both (19)F images and (19)F spectra acquired on blood samples collected at different times after infusion. This study shows the ability of (19)F MRI to selectively map the bio-distribution of (19)F-BPA in a C6 rat glioma model, as well as providing a useful method to perform pharmacokinetics of BNCT carriers.

In vivo (19)F MRI and (19)F MRS of (19)F-labelled boronophenylalanine-fructose complex on a C6 rat glioma model to optimize boron neutron capture therapy (BNCT)

Capuani Silvia;
2008

Abstract

Boron neutron capture therapy (BNCT) is a promising binary modality used to treat malignant brain gliomas. To optimize BNCT effectiveness a non-invasive method is needed to monitor the spatial distribution of BNCT carriers in order to estimate the optimal timing for neutron irradiation. In this study, in vivo spatial distribution mapping and pharmacokinetics evaluation of the (19)F-labelled boronophenylalanine (BPA) were performed using (19)F magnetic resonance imaging ((19)F MRI) and (19)F magnetic resonance spectroscopy ((19)F MRS). Characteristic uptake of (19)F-BPA in C6 glioma showed a maximum at 2.5 h after compound infusion as confirmed by both (19)F images and (19)F spectra acquired on blood samples collected at different times after infusion. This study shows the ability of (19)F MRI to selectively map the bio-distribution of (19)F-BPA in a C6 rat glioma model, as well as providing a useful method to perform pharmacokinetics of BNCT carriers.
2008
19FMRI
19FMRS
glioma rat model; BNCT
19F-pharmacokitetic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/301336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact