Abstract This paper overviews the work made by our group during the past 10-15 years on crystalline systems, semiconductor surfaces, molecular complexes and on materials of interest for technological applications, such as the defective silicon or the novel generation thermoelectric materials. Our main aim of extracting chemical insight into the analysis of electron densities and computed wave functions is illustrated through a number of examples. The recently proposed Source Function analysis is reviewed and a few of its more interesting applications are summarized. Software package developments, motivated by the need of a direct comparison with experiment or by the help these packages can provide for interpreting complex experimental outcomes, are described and future directions outlined. A particular emphasis is given to the TOPOND and TOPXD programs, which enable one to analyze theoretical and experimental crystalline densities using the rigorous framework of the Quantum Theory of Atoms in Molecules, due to Bader.

Chemical insight from electron density and wavefunctions: software developments and applications to crystals, molecular complexes and materials science

Cargnoni F;Gatti C
2007

Abstract

Abstract This paper overviews the work made by our group during the past 10-15 years on crystalline systems, semiconductor surfaces, molecular complexes and on materials of interest for technological applications, such as the defective silicon or the novel generation thermoelectric materials. Our main aim of extracting chemical insight into the analysis of electron densities and computed wave functions is illustrated through a number of examples. The recently proposed Source Function analysis is reviewed and a few of its more interesting applications are summarized. Software package developments, motivated by the need of a direct comparison with experiment or by the help these packages can provide for interpreting complex experimental outcomes, are described and future directions outlined. A particular emphasis is given to the TOPOND and TOPXD programs, which enable one to analyze theoretical and experimental crystalline densities using the rigorous framework of the Quantum Theory of Atoms in Molecules, due to Bader.
2007
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Electron densities · Quantum theory of atoms in molecules and crystals · Hydrogen-bonded systems · Semiconductor surfaces · Thermoelectric materials · Source function
File in questo prodotto:
File Dimensione Formato  
prod_48057-doc_2445.pdf

solo utenti autorizzati

Descrizione: Chemical insight from electron density and wavefunctions:software developments and applications to crystals, molecular complexes and materials science
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/30153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact