Due to the improved spatial resolution, Earth observation (EO) data, either from Synthetic Aperture Radar (SAR) or ptical sensor, provide the opportunity to assess earthquake damage of individual buildings. However, the operational use of EO data for earthquake damage mapping is basically limited to the visual inspection of Very High Resolution (VHR) optical imagery. In this work we investigate the feasibility of a damage assessment product at single building scale from a pair of VHR SAR images acquired before and after a seismic event. We perform the change analysis using the Kullbach-Leibler divergence and the intensity ratio and then we associate detected changes to a building map provided as GIS layer. Finally the expected SAR signature of a collapsed building is considered to identify severely damaged buildings. In order to test the proposed methodology we use Spotlight COSMO-SkyMed SAR imagery of L'Aquila (Italy) collected before and after the earthquake occurred on April 6, 2009. A macroseismic survey on the whole central area of L'Aquila city based on the European Macroseismic Scale 1998 is used to assess the capability of VHR SAR images to map damage.

Detecting earthquake damage in urban area: application to COSMO-SkyMed imagery of L'Aquila earthquake

Martinelli A;Mannella A
2015

Abstract

Due to the improved spatial resolution, Earth observation (EO) data, either from Synthetic Aperture Radar (SAR) or ptical sensor, provide the opportunity to assess earthquake damage of individual buildings. However, the operational use of EO data for earthquake damage mapping is basically limited to the visual inspection of Very High Resolution (VHR) optical imagery. In this work we investigate the feasibility of a damage assessment product at single building scale from a pair of VHR SAR images acquired before and after a seismic event. We perform the change analysis using the Kullbach-Leibler divergence and the intensity ratio and then we associate detected changes to a building map provided as GIS layer. Finally the expected SAR signature of a collapsed building is considered to identify severely damaged buildings. In order to test the proposed methodology we use Spotlight COSMO-SkyMed SAR imagery of L'Aquila (Italy) collected before and after the earthquake occurred on April 6, 2009. A macroseismic survey on the whole central area of L'Aquila city based on the European Macroseismic Scale 1998 is used to assess the capability of VHR SAR images to map damage.
2015
Istituto per le Tecnologie della Costruzione - ITC
SAR
COSMO-SkyMed
GIS
damage detection
earthquakes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/301609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact