We show that a nonlinear metal-dielectric layered slab of subwavelength thickness and very small average dielectric permittivity displays optical multistable behavior at arbitrary low optical intensities. This is due to the fact that, in the presence of the small linear permittivity, one of the multiple electromagnetic slab states exists no matter how small is the transmitted optical intensity. We prove that multiple states at ultra-low optical intensities can be reached only by simultaneously operating on the incident optical intensity and incidence angle. By performing full wave simulations, we prove that the predicted phenomenology is feasible and very robust. © 2010 Optical Society of America.

Multistability at arbitrary low optical intensities in a metal-dielectric layered structure

Ciattoni A;Ciattoni A;
2011

Abstract

We show that a nonlinear metal-dielectric layered slab of subwavelength thickness and very small average dielectric permittivity displays optical multistable behavior at arbitrary low optical intensities. This is due to the fact that, in the presence of the small linear permittivity, one of the multiple electromagnetic slab states exists no matter how small is the transmitted optical intensity. We prove that multiple states at ultra-low optical intensities can be reached only by simultaneously operating on the incident optical intensity and incidence angle. By performing full wave simulations, we prove that the predicted phenomenology is feasible and very robust. © 2010 Optical Society of America.
2011
epsilon near zero
nonlinear device
multistability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/301683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact