Gate-voltage control of interedge tunneling at a split-gate constriction in the fractional quantum Hall regime is reported. Quantitative agreement with the behavior predicted for out-of-equilibrium quasiparticle transport between chiral Luttinger liquids is shown at low temperatures at specific values of the backscattering strength. When the latter is lowered by changing the gate voltage, the zero-bias peak of the tunneling conductance evolves into a minimum, and a nonlinear quasiholelike characteristic emerges. Our analysis emphasizes the role of the local filling factor in the split-gate constriction region.

Interedge strong-to-weak scattering evolution at a constriction in the fractional quantum Hall regime

Roddaro S;Pellegrini V;Beltram F;Biasiol G;Sorba L
2004

Abstract

Gate-voltage control of interedge tunneling at a split-gate constriction in the fractional quantum Hall regime is reported. Quantitative agreement with the behavior predicted for out-of-equilibrium quasiparticle transport between chiral Luttinger liquids is shown at low temperatures at specific values of the backscattering strength. When the latter is lowered by changing the gate voltage, the zero-bias peak of the tunneling conductance evolves into a minimum, and a nonlinear quasiholelike characteristic emerges. Our analysis emphasizes the role of the local filling factor in the split-gate constriction region.
2004
INFM
quantum Hall
constriction
Luttinger
edge transport
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/3019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 54
social impact