Aiming at understanding how plasmonic reactions depend on important parameters such as metal loading and strong metal-support interaction (SMSI), we report the plasmonic photodegradation of formic acid (FA) under green LED irradiation employing three TiO2 supports (stoichiometric TiO2, N-doped TiO2, black TiO2) modified with Au nanoparticles (NPs) 3-6 nm in size. The rate of FA photo-oxidation follows different trends depending on Au loading for stoichiometric and doped Au/TiO2 materials. In the first case, the only contribution of hot electron transfer produces a volcano-shaped curve of photoreaction rates with increasing the Au loading. When TiO2 contains intra-bandgap states the photoactivity increases linearly with the Au NPs amount, thanks to the concomitant enhancement produced by hot electron transfer and plasmonic resonant energy transfer (PRET). The role of PRET is supported by Finite-Difference Time-Domain simulations, which show that the increase of both A u NPs inter-distance and of SMSI enhances the probability of charge carrier generation at the Au/TiO2 interface.

Influence of the TiO 2 Electronic Structure and of Strong Metal- Support Interaction on Plasmonic Au Photocatalytic Oxidations

Marcello Marelli;
2015

Abstract

Aiming at understanding how plasmonic reactions depend on important parameters such as metal loading and strong metal-support interaction (SMSI), we report the plasmonic photodegradation of formic acid (FA) under green LED irradiation employing three TiO2 supports (stoichiometric TiO2, N-doped TiO2, black TiO2) modified with Au nanoparticles (NPs) 3-6 nm in size. The rate of FA photo-oxidation follows different trends depending on Au loading for stoichiometric and doped Au/TiO2 materials. In the first case, the only contribution of hot electron transfer produces a volcano-shaped curve of photoreaction rates with increasing the Au loading. When TiO2 contains intra-bandgap states the photoactivity increases linearly with the Au NPs amount, thanks to the concomitant enhancement produced by hot electron transfer and plasmonic resonant energy transfer (PRET). The role of PRET is supported by Finite-Difference Time-Domain simulations, which show that the increase of both A u NPs inter-distance and of SMSI enhances the probability of charge carrier generation at the Au/TiO2 interface.
2015
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Istituto Officina dei Materiali - IOM -
TiO2
Au
formic acid
photo-oxidation
plasmon
File in questo prodotto:
File Dimensione Formato  
prod_341325-doc_106776.pdf

solo utenti autorizzati

Descrizione: Catalysis Science & Technology, 2015, DOI: 10.1039/C5CY01736J
Tipologia: Documento in Pre-print
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/301909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact