We propose a complete framework for the synthesis of 3D holographic scene, combining multiple color holograms of different objects by applying adaptive transformations. In particular, it has been demonstrated that affine transformation of digital holograms can be employed to defocus and chromatic aberrations. By combining these two features we are able to synthesize a color scene where multiple objects are jointly multiplexed. Since holograms transformation could be introduce artifacts in the holographic reconstructions, principally related to the presence of speckle noise, we also implement a denoising step where the Bi-dimensional Empirical Mode Decomposition (BEMD) algorithm is employed. We test the proposed framework in two different scenario, i.e. by coding color three-dimensional scenes and joining different objects that are (i) experimentally recorded and (ii) obtained as color computer generated holograms (CCGH).

Color holograms synthesis framework for three-dimensional scenes reconstruction

Memmolo Pasquale;Leo Marco;Distante Cosimo;Paturzo Melania;Ferraro Pietro
2015

Abstract

We propose a complete framework for the synthesis of 3D holographic scene, combining multiple color holograms of different objects by applying adaptive transformations. In particular, it has been demonstrated that affine transformation of digital holograms can be employed to defocus and chromatic aberrations. By combining these two features we are able to synthesize a color scene where multiple objects are jointly multiplexed. Since holograms transformation could be introduce artifacts in the holographic reconstructions, principally related to the presence of speckle noise, we also implement a denoising step where the Bi-dimensional Empirical Mode Decomposition (BEMD) algorithm is employed. We test the proposed framework in two different scenario, i.e. by coding color three-dimensional scenes and joining different objects that are (i) experimentally recorded and (ii) obtained as color computer generated holograms (CCGH).
2015
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Color holography
adaptive transformation
image denoising
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/302295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact