Recently, X-ray illumination, using synchrotron radiation, has been used to manipulate defects, stimulate self-organization, and to probe their structure. Here, we explore a method of defect-engineering low-dimensional systems using focused laboratory-scale X-ray sources. We demonstrate an irreversible change in the conducting properties of the two-dimensional electron gas at the interface between the complex oxide materials LaAlO (3) and SrTiO (3) by X-ray irradiation. The electrical resistance is monitored during exposure as the irradiated regions are driven into a high-resistance state. Our results suggest attention shall be paid on electronic structure modification in X-ray spectroscopic studies and highlight large-area defect manipulation and direct device patterning as possible new fields of application for focused laboratory X-ray sources.
Manipulating Electronic States at Oxide Interfaces Using Focused Micro X-Rays from Standard Lab Sources
Campi Gaetano;
2015
Abstract
Recently, X-ray illumination, using synchrotron radiation, has been used to manipulate defects, stimulate self-organization, and to probe their structure. Here, we explore a method of defect-engineering low-dimensional systems using focused laboratory-scale X-ray sources. We demonstrate an irreversible change in the conducting properties of the two-dimensional electron gas at the interface between the complex oxide materials LaAlO (3) and SrTiO (3) by X-ray irradiation. The electrical resistance is monitored during exposure as the irradiated regions are driven into a high-resistance state. Our results suggest attention shall be paid on electronic structure modification in X-ray spectroscopic studies and highlight large-area defect manipulation and direct device patterning as possible new fields of application for focused laboratory X-ray sources.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


