We compute the maximum Lyapunov exponent lambda of an earthquake model which exhibits deterministic chaos and we discuss its relation with the predictability time of the system. A method is proposed to estimate lambda by the calculation of the entropy of Markov processes which mimic (i) a Poincare map of the model and (ii) a random map related to the seismic signal. The latter map can be obtained using experimental records generated by low-dimensional chaotic systems where Poincare maps are not feasible.
PREDICTABILITY TIME FROM THE SEISMIC SIGNAL IN AN EARTHQUAKE MODEL
LACORATA G;
1993
Abstract
We compute the maximum Lyapunov exponent lambda of an earthquake model which exhibits deterministic chaos and we discuss its relation with the predictability time of the system. A method is proposed to estimate lambda by the calculation of the entropy of Markov processes which mimic (i) a Poincare map of the model and (ii) a random map related to the seismic signal. The latter map can be obtained using experimental records generated by low-dimensional chaotic systems where Poincare maps are not feasible.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


