The application of global/local hybrid DIRECT algorithms to the simulation-based hull form optimization of a military vessel is presented, aimed at the reduction of the resistance in calm water. The specific features of the black-box-type objective function make the problem suitable for the application of DIRECT-type algorithms. The objective function is given by numerical iterative procedures, which could lead to inaccurate derivative calculations. In addition, the presence of local minima cannot be excluded a priori. The algorithms proposed (namely DIRMIN and DIRMIN-2) are hybridizations of the classic DIRECT algorithm, with deterministic derivative-free local searches. The algorithms' performances are first assessed on a set of test problems, and then applied to the ship optimization application. The numerical results show that the local hybridization of the DIRECT algorithm has beneficial effects on the overall computational cost and on the efficiency of the simulation-based optimization procedure.

Derivative-free global ship design optimization using global/local hybridization of the DIRECT algorithm

Matteo Diez;Giampaolo Liuzzi;Andrea Serani
2016

Abstract

The application of global/local hybrid DIRECT algorithms to the simulation-based hull form optimization of a military vessel is presented, aimed at the reduction of the resistance in calm water. The specific features of the black-box-type objective function make the problem suitable for the application of DIRECT-type algorithms. The objective function is given by numerical iterative procedures, which could lead to inaccurate derivative calculations. In addition, the presence of local minima cannot be excluded a priori. The algorithms proposed (namely DIRMIN and DIRMIN-2) are hybridizations of the classic DIRECT algorithm, with deterministic derivative-free local searches. The algorithms' performances are first assessed on a set of test problems, and then applied to the ship optimization application. The numerical results show that the local hybridization of the DIRECT algorithm has beneficial effects on the overall computational cost and on the efficiency of the simulation-based optimization procedure.
2016
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Ship design
Simulation-based design optimization
DIRECT-type algorithm
Global optimization
Local search
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/302501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact