We consider an integro-differential model for evolutionary gametheory which describes the evolution of a population adopting mixed strategies.Using a reformulation based on the first moments of the solution, we provesome analytical properties of the model and global estimates. The asymptoticbehavior and the stability of solutions in the case of two strategies is analyzedin details. Numerical schemes for two and three strategies which are able tocapture the correct equilibrium states are also proposed together with severalnumerical examples. © American Institute of Mathematical Sciences.

On a continuous mixed strategies model for Evolutionary game theory

Natalini Roberto;
2011

Abstract

We consider an integro-differential model for evolutionary gametheory which describes the evolution of a population adopting mixed strategies.Using a reformulation based on the first moments of the solution, we provesome analytical properties of the model and global estimates. The asymptoticbehavior and the stability of solutions in the case of two strategies is analyzedin details. Numerical schemes for two and three strategies which are able tocapture the correct equilibrium states are also proposed together with severalnumerical examples. © American Institute of Mathematical Sciences.
2011
Istituto Applicazioni del Calcolo ''Mauro Picone''
Continuous mixed strategies
Evolutionary game theory
Kinetic equations
Numerical methods
Replicator dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/302511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact