The PATZ1 gene encoding a POZ/AT-hook/Kruppel zinc finger (PATZ) transcription factor, is considered a cancer-related gene because of its loss or misexpression in human neoplasias. As for other POZ/domain and Kruppel zinc finger (POK) family members, the transcriptional activity of PATZ is due to the POZ-mediated oligomer formation, suggesting that it might be not a typical transactivator but an architectural transcription factor, thus functioning either as activator or as repressor depending on the presence of proteins able to interact with it. Therefore, to better elucidate PATZ function, we searched for its molecular partners. By yeast two-hybrid screenings, we found a specific interaction between PATZ and BCL6, a human oncogene that plays a key role in germinal center (GC) derived neoplasias. We demonstrate that PATZ and BCL6 interact in germinal center-derived B lymphoma cells, through the POZ domain of PATZ. Moreover, we show that PATZ is able to bind the BCL6 regulatory region, where BCL6 itself acts as a negative regulator, and to contribute to negatively modulate its activity. Consistently, disruption of one or both Patz1 alleles in mice causes focal expansion of thymus B cells, in which BCL6 is up-regulated. This phenotype was almost completely rescued by crossing Patz1(+/-) with Bcl6(+/-) mice, indicating a key role for Bcl6 expression in its development. Finally, a significant number of Patz1 knock-out mice (both heterozygous and homozygous) also develop BCL6-expressing lymphomas. Therefore, the disruption of one or both Patz1 alleles may favor lymphomagenesis by activating the BCL6 pathway.
POZ-, AT-hook-, and Zinc Finger-containing Protein (PATZ) Interacts with Human Oncogene B Cell Lymphoma 6 (BCL6) and Is Required for Its Negative Autoregulation
Valentino Teresa;Federico Antonella;Keller Simona;Fusco Alfredo;Fedele Monica
2012
Abstract
The PATZ1 gene encoding a POZ/AT-hook/Kruppel zinc finger (PATZ) transcription factor, is considered a cancer-related gene because of its loss or misexpression in human neoplasias. As for other POZ/domain and Kruppel zinc finger (POK) family members, the transcriptional activity of PATZ is due to the POZ-mediated oligomer formation, suggesting that it might be not a typical transactivator but an architectural transcription factor, thus functioning either as activator or as repressor depending on the presence of proteins able to interact with it. Therefore, to better elucidate PATZ function, we searched for its molecular partners. By yeast two-hybrid screenings, we found a specific interaction between PATZ and BCL6, a human oncogene that plays a key role in germinal center (GC) derived neoplasias. We demonstrate that PATZ and BCL6 interact in germinal center-derived B lymphoma cells, through the POZ domain of PATZ. Moreover, we show that PATZ is able to bind the BCL6 regulatory region, where BCL6 itself acts as a negative regulator, and to contribute to negatively modulate its activity. Consistently, disruption of one or both Patz1 alleles in mice causes focal expansion of thymus B cells, in which BCL6 is up-regulated. This phenotype was almost completely rescued by crossing Patz1(+/-) with Bcl6(+/-) mice, indicating a key role for Bcl6 expression in its development. Finally, a significant number of Patz1 knock-out mice (both heterozygous and homozygous) also develop BCL6-expressing lymphomas. Therefore, the disruption of one or both Patz1 alleles may favor lymphomagenesis by activating the BCL6 pathway.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.