Liquid-crystal devices are a promising cheap alternative for terahertz light modulation, albeit they suffer from problems associated with thick cells. Here we describe a few-micron-thick polarization-independent nematic liquid-crystal metamaterial device displaying terahertz reflectance modulation depths above 23 dB, millisecond response times, low operating voltages, and a spectral tuning of more than 15%. The dramatic performance improvement is based on invoking critical coupling with external fields, which rests on a suitable choice of resonator geometry. We analyze the coupling mechanism to conclude that perfect absorption can be reached with a wide range of parameters and liquid-crystal materials. The proposed device performance, microscopic details, and the nematic molecule switching dynamics are evaluated with the use of a rigorous tensorial formulation of the Landau-de Gennes theory and shown to be robust to small parameter deviations.

Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals

Beccherelli Romeo;
2015

Abstract

Liquid-crystal devices are a promising cheap alternative for terahertz light modulation, albeit they suffer from problems associated with thick cells. Here we describe a few-micron-thick polarization-independent nematic liquid-crystal metamaterial device displaying terahertz reflectance modulation depths above 23 dB, millisecond response times, low operating voltages, and a spectral tuning of more than 15%. The dramatic performance improvement is based on invoking critical coupling with external fields, which rests on a suitable choice of resonator geometry. We analyze the coupling mechanism to conclude that perfect absorption can be reached with a wide range of parameters and liquid-crystal materials. The proposed device performance, microscopic details, and the nematic molecule switching dynamics are evaluated with the use of a rigorous tensorial formulation of the Landau-de Gennes theory and shown to be robust to small parameter deviations.
2015
Istituto per la Microelettronica e Microsistemi - IMM
Terahertz
liquid crystal
metamaterial
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/302567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 146
  • ???jsp.display-item.citation.isi??? 131
social impact