The transport properties of CaCuO2/SrTiO3 single interfaces are studied by resistance versus temperature measurements in external magnetic fields. The superconducting anisotropy gamma=xi(a-b)/xi(c), where xi(a-b) and xi(c) are the superconducting coherence lengths parallel and perpendicular to the interface, respectively, shows values higher than that previously obtained for CaCuO2/SrTiO3 superlattices deposited in the same conditions. The larger anisotropy, observed for the single interfaces, indicates that the charge carriers are confined inside a thin superconducting layer next to the interface rather than spread throughout the whole CaCuO2 block. The activation energy and the irreversibility line confirm this hypothesis, suggesting that quasi two-dimensional transport is dominant in this system. The interpretation of the experimental data in the framework of the Berezinskii-Kosterlitz-Thouless theory confirms that the thickness of the superconducting sheet layer is about 1 nm, corresponding roughly to two CaCuO2 unit cells.

Anisotropic properties of a single superconducting CaCuO2/SrTiO3 interface

Di Castro D
2015

Abstract

The transport properties of CaCuO2/SrTiO3 single interfaces are studied by resistance versus temperature measurements in external magnetic fields. The superconducting anisotropy gamma=xi(a-b)/xi(c), where xi(a-b) and xi(c) are the superconducting coherence lengths parallel and perpendicular to the interface, respectively, shows values higher than that previously obtained for CaCuO2/SrTiO3 superlattices deposited in the same conditions. The larger anisotropy, observed for the single interfaces, indicates that the charge carriers are confined inside a thin superconducting layer next to the interface rather than spread throughout the whole CaCuO2 block. The activation energy and the irreversibility line confirm this hypothesis, suggesting that quasi two-dimensional transport is dominant in this system. The interpretation of the experimental data in the framework of the Berezinskii-Kosterlitz-Thouless theory confirms that the thickness of the superconducting sheet layer is about 1 nm, corresponding roughly to two CaCuO2 unit cells.
2015
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
interface superconductivity
superconducting anisotropy
two-dimensional superconductivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/302605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact