Using covariance identities based on the Clark-Ocone representation formula we derive Gaussian density bounds and tail estimates for the probability law of the solutions of several types of stochastic differential equations, including Stratonovich equations with boundary condition and irregular drifts, and equations driven by fractional Brownian motion. Our arguments are generally simpler than the existing ones in the literature as our approach avoids the use of the inverse of the Ornstein-Uhlenbeck operator.
Gaussian Estimates for the Solutions of Some One-dimensional Stochastic Equations
Torrisi Giovanni Luca
2015
Abstract
Using covariance identities based on the Clark-Ocone representation formula we derive Gaussian density bounds and tail estimates for the probability law of the solutions of several types of stochastic differential equations, including Stratonovich equations with boundary condition and irregular drifts, and equations driven by fractional Brownian motion. Our arguments are generally simpler than the existing ones in the literature as our approach avoids the use of the inverse of the Ornstein-Uhlenbeck operator.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.