A theoretical investigation based on DFT, TD-DFT, and CASSCF/CASPT2 methods has been carried out to elucidate the photophysics of two anilino-substituted pentacyano- and tetracyanobuta-1,3-dienes (PCBD and TCBD, respectively). These molecules exhibit exceptional electron-accepting properties, but their effective use in multicomponent systems for photoinduced electron transfer is limited because they undergo ultrafast (1 ps) radiationless deactivation. We show that the lowest-energy excited states of these molecules have a twisted intramolecular charge-transfer character and deactivate to the ground state through energetically accessible conical intersections (CIs). The topology of the lowest-energy CI, analyzed with a linear interpolation of the two branching-space vectors (g and h), indicates it is a sloped CI, ultimately responsible for the ultrafast deactivation of this class of compounds.

Anilino-Substituted Multicyanobuta-1,3-diene Electron Acceptors: TICT Molecules with Accessible Conical Intersections.

Monti Filippo;Venturini Alessandro;Armaroli Nicola
2015

Abstract

A theoretical investigation based on DFT, TD-DFT, and CASSCF/CASPT2 methods has been carried out to elucidate the photophysics of two anilino-substituted pentacyano- and tetracyanobuta-1,3-dienes (PCBD and TCBD, respectively). These molecules exhibit exceptional electron-accepting properties, but their effective use in multicomponent systems for photoinduced electron transfer is limited because they undergo ultrafast (1 ps) radiationless deactivation. We show that the lowest-energy excited states of these molecules have a twisted intramolecular charge-transfer character and deactivate to the ground state through energetically accessible conical intersections (CIs). The topology of the lowest-energy CI, analyzed with a linear interpolation of the two branching-space vectors (g and h), indicates it is a sloped CI, ultimately responsible for the ultrafast deactivation of this class of compounds.
2015
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
CASSCF/CASPT2
Conical Intersections
Electron Transfer
photophysics
TICT Molecules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/302882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact