We propose a technique to decompose a 3D digital shape into a set of interlocking pieces that are easy to be manufactured and assembled. The pieces are designed so that they can be represented as a simple height field and, therefore, they can be manufactured by common 3D printers without the usage of supporting material. The removal of the supporting material is often a burdensome task and may eventually damage the surface of the printed object. Our approach makes the final reproduction cheaper, accurate and suitable for the reproduction of tangible cultural heritages. Moreover, since the proposed technique decomposes the artwork in pieces, it also overcomes the working space limits of common printers. The decomposition of the input (high-resolution) triangular mesh is driven by a coarse polygonal base mesh (representing the target subdivision in pieces); the height fields defining each piece are generated by sampling distances along the normal of each face composing the base mesh. A innovative interlocking mechanism allows adjacent pieces to plug each other to compose the final shape. This interlocking mechanism is designed to preserve the height field property of the pieces and to provide a sufficient degree of grip to ensure the assembled structure shape to be compact and stable. We demonstrate the effectiveness of our approach and show its limitations with some practical reproduction examples.

Interlocking pieces for printing tangible Cultural Heritage replicas

Cignoni P;Pietroni N;Ponchio F;Scopigno R
2014

Abstract

We propose a technique to decompose a 3D digital shape into a set of interlocking pieces that are easy to be manufactured and assembled. The pieces are designed so that they can be represented as a simple height field and, therefore, they can be manufactured by common 3D printers without the usage of supporting material. The removal of the supporting material is often a burdensome task and may eventually damage the surface of the printed object. Our approach makes the final reproduction cheaper, accurate and suitable for the reproduction of tangible cultural heritages. Moreover, since the proposed technique decomposes the artwork in pieces, it also overcomes the working space limits of common printers. The decomposition of the input (high-resolution) triangular mesh is driven by a coarse polygonal base mesh (representing the target subdivision in pieces); the height fields defining each piece are generated by sampling distances along the normal of each face composing the base mesh. A innovative interlocking mechanism allows adjacent pieces to plug each other to compose the final shape. This interlocking mechanism is designed to preserve the height field property of the pieces and to provide a sufficient degree of grip to ensure the assembled structure shape to be compact and stable. We demonstrate the effectiveness of our approach and show its limitations with some practical reproduction examples.
2014
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-905674-63-7
3D printing
Cultural Heritage
COMPUTER GRAPHICS
File in questo prodotto:
File Dimensione Formato  
prod_343516-doc_107441.pdf

solo utenti autorizzati

Descrizione: Interlocking pieces for printing tangible Cultural Heritage replicas
Tipologia: Versione Editoriale (PDF)
Dimensione 12.89 MB
Formato Adobe PDF
12.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/302926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact