Enrichment of mixed microbial cultures (MMCs) in polyhydroxyalkanoate (PHA)-storing microorganisms must take place to develop a successful PHA production process. Moreover, throughout the operational period of a MMC system, the population needs to be checked in order to understand the changes in the performance that eventually occurred. For these reasons, it is necessary to monitor the population evolution, in order to identify the different groups of microorganisms and relate them with the storage capacity and kinetics of the MMC. Regarding this particular process, several culture-independent molecular techniques were already applied, with the use of hybridization techniques such fluorescence in situ hybridization and also PCR-based methods like denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, pyrosequencing, and quantitative PCR standing out. This review intends, thus, to look at the molecular methods currently applied in monitoring the PHA-storing population evolution and how they can be combined with the evolutionary engineering step in order to optimize the overall process.
Unveiling PHA-storing populations using molecular methods.
Rossetti Simona;
2015
Abstract
Enrichment of mixed microbial cultures (MMCs) in polyhydroxyalkanoate (PHA)-storing microorganisms must take place to develop a successful PHA production process. Moreover, throughout the operational period of a MMC system, the population needs to be checked in order to understand the changes in the performance that eventually occurred. For these reasons, it is necessary to monitor the population evolution, in order to identify the different groups of microorganisms and relate them with the storage capacity and kinetics of the MMC. Regarding this particular process, several culture-independent molecular techniques were already applied, with the use of hybridization techniques such fluorescence in situ hybridization and also PCR-based methods like denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, pyrosequencing, and quantitative PCR standing out. This review intends, thus, to look at the molecular methods currently applied in monitoring the PHA-storing population evolution and how they can be combined with the evolutionary engineering step in order to optimize the overall process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.